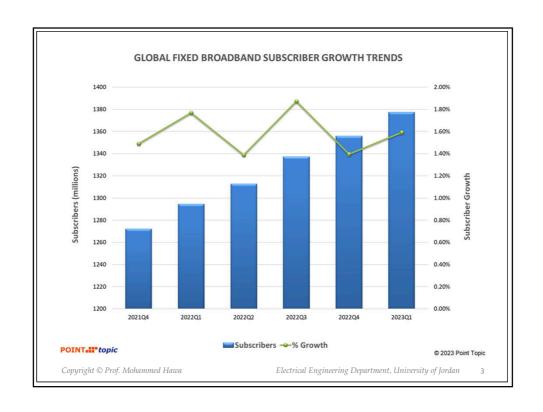
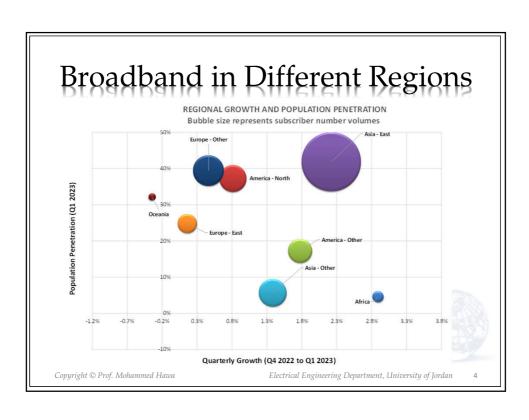
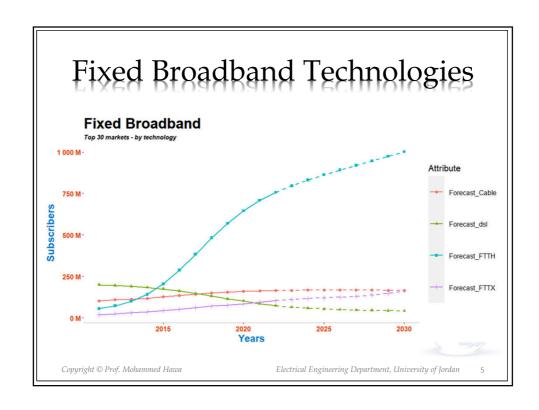
Lecture 4: Local Loop Technologies, Internet Access & Leased Lines

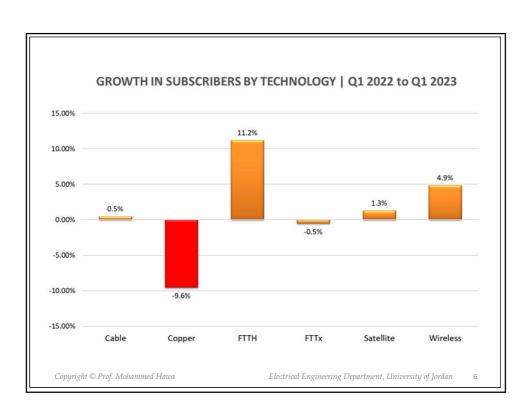
Prof. Mohammed Hawa Electrical Engineering Department The University of Jordan

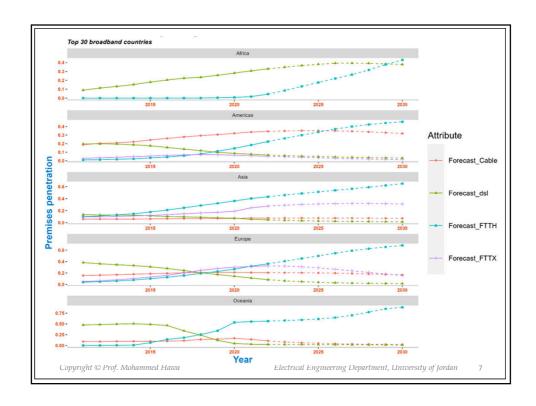
EE426: Communication Networks

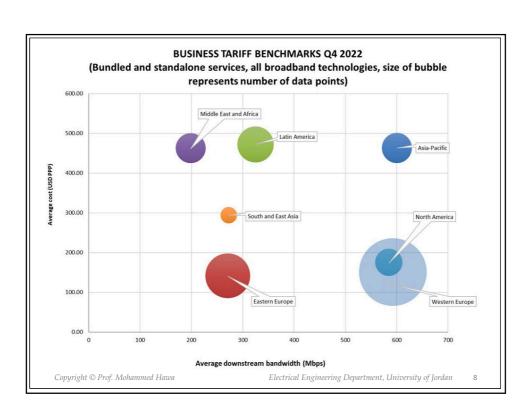

Internet Access Technologies

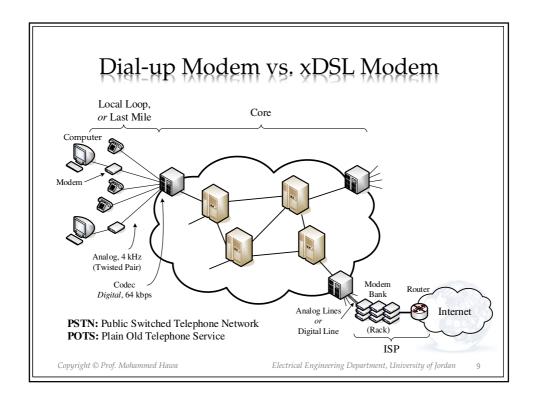

- Old Dial-up Modem
- Digital Subscriber Line (xDSL)
- Fiber (FTTx)
- Cable TV (CATV) Networks
- Power line communication (PLC)
- Leased Lines
- Cellular

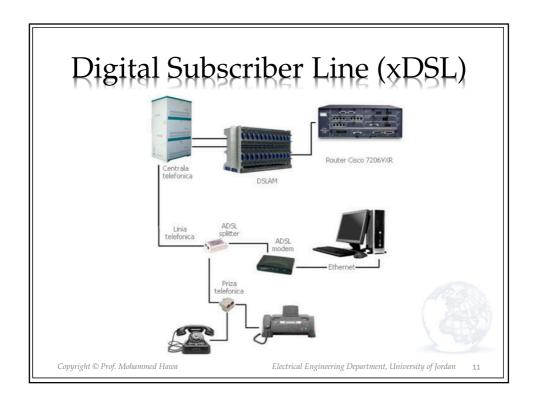



Copyright © Prof. Mohammed Hawa


Electrical Engineering Department, University of Jordan





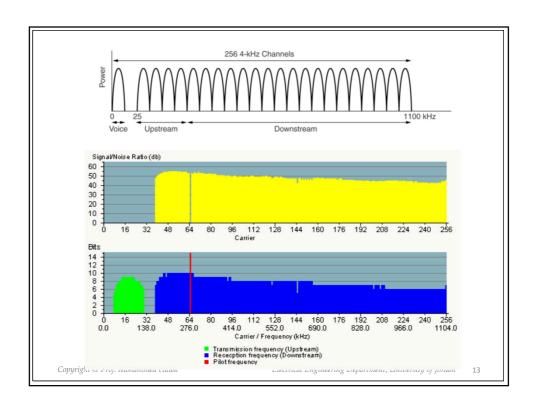


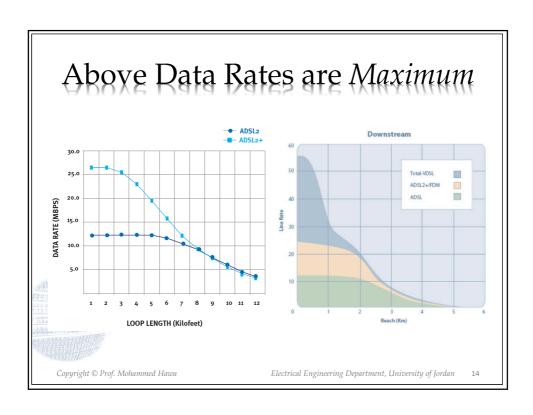
Dial-up Modems

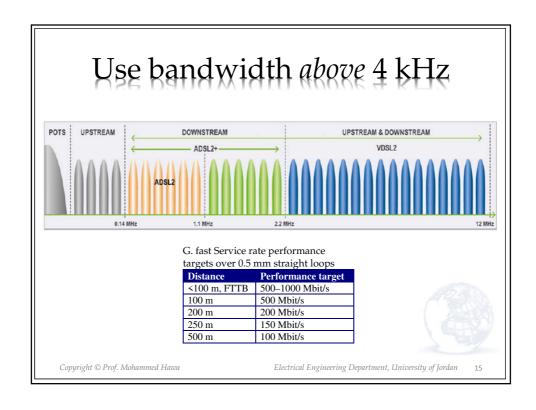
- Transmission is limited by the 4 kHz anti-aliasing LPF at the L.E. line card.
- Disadvantages:
 - Limited bandwidth means limited data rate (best was ITU-T V.92 56kbps downstream/48kbps upstream).
 - Expensive path reserved by circuit-switching to ISP.
 - Cannot make a phone call and connect to the Internet at the same time.
- Advantages:
 - Re-use of the existing local loop (no need for new very expensive infrastructure).

Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan


xDSL Standards

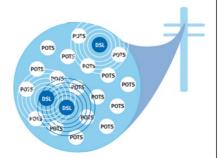

 Different variants of DSL technologies exist: ADSL/ADSL2/ADSL2+ (Asymmetric DSL), SDSL (Symmetric DSL), HDSL (High-bit-rate DSL), VDSL/VDSL2 (Very High Rate DSL), RADSL (Rate-Adaptive DSL), GDSL (Gigabit DSL).


Name	Standard Name	Downstream rate	Upstream rate
ADSL	ANSI T1.413-1998 Issue 2	8 Mbit/s	1.0 Mbit/s
ADSL2	ITU-T G.992.3 Annex J	12 Mbit/s	3.5 Mbit/s
ADSL2+M	ITU-T G.992.5 Annex M	24 Mbit/s	3.3 Mbit/s
VDSL	ITU-T G.993.1	55 Mbit/s	3 Mbit/s
VDSL2-Vplus	ITU-T G.993.2 Amendment	300 Mbit/s	100 Mbit/s
O CONTRACTOR	I	1.01:1/	100 1 11 /
G.fast	ITU-T G.9700 & G.9701	1 Gbit/s	100 Mbit/s

Copyright © Prof. Mohammed Hawa

 ${\it Electrical\ Engineering\ Department,\ University\ of\ Jordan}$

G.fast and Vectoring


- G.fast provides up to 1 Gbit/s aggregate uplink and downlink data rate at 100m distance.
- Approved in December 2014, deployments in 2016.
- G.fast uses DMT. It modulates up to 12 bit per DMT frequency carrier, reduced from 15 in VDSL2 to reduce complexity.
- G.fast uses 106 MHz bandwidth, with 212 MHz profiles planned for future amendments.
- Compared to 8.5, 17.664, or 30 MHz profiles in VDSL2.
- G.fast uses TDD, as opposed to ADSL2 and VDSL2, which use FDD, with symmetry ratios of 90/10 up to 10/90, including 50/50.
- Performance in G.fast systems is limited by crosstalk between multiple wire pairs in a single cable (called Self-FEXT: far-end crosstalk).

Copyright © Prof. Mohammed Hawa

 ${\it Electrical\ Engineering\ Department,\ University\ of\ Jordan}$

Vectoring

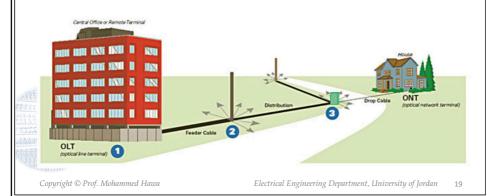
- Vectoring coordinates line signals to reduce crosstalk (noise cancellation).
- Vectoring was previously specified for VDSL2 by the ITU-T in G.993.5, called G.vector.
- The first version of G.fast will support an improved version of the linear precoding scheme found in G.vector.
- Non-linear precoding planned for a future amendment.

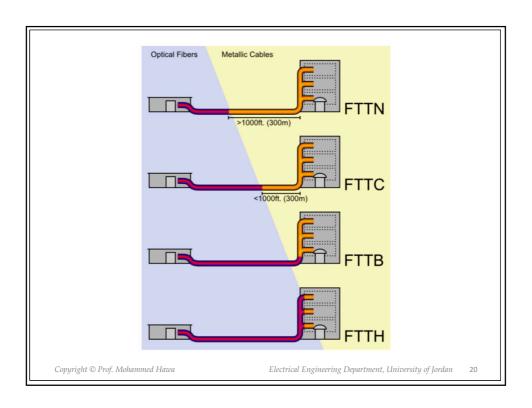
Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan

17

G.fast Deployment


- **FTTdp** (fiber to the distribution point) is commonly associated with G.fast, similar to how FTTN is associated with VDSL2.
- FTTdp is in between FTTC and FTTH.
- In FTTdp, a limited number of subscribers at a distance of up to 200–300 m are attached to one fiber node (can be mounted on a pole or underground), which acts as a DSLAM.
- Compared to ADSL2 where the DSLAM is located in the Local Exchange at a distance of up to 5 km from the subscriber, while in some VDSL2 the DSLAM is located in a street cabinet and serves hundreds of subscribers at distances up to 1 km.


Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan

Fiber to the x (FTTx)

- Telephony networks consist of a large distribution network of copper wires.
- Fiber to the node / Fiber to the neighborhood (FTTN)
- Fiber to the curb (FTTC) / Fiber to the kerb (FTTK)
- Fiber to the distribution point (FTTdp)
- Fiber to the building (FTTB)
- Fiber to the home (FTTH)

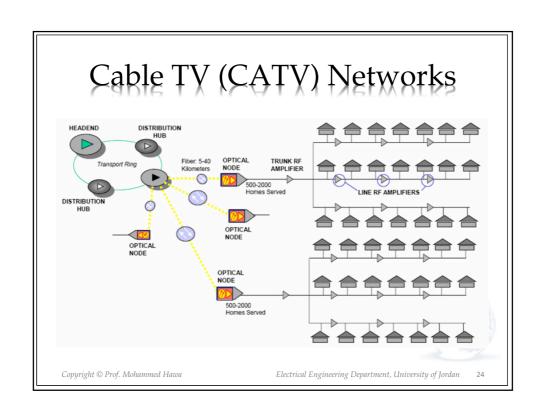
Equipment

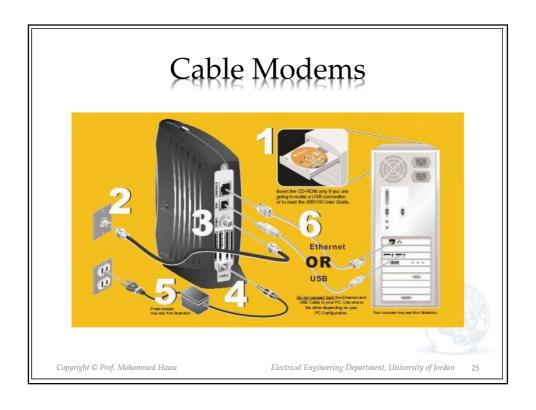
Copyright © Prof. Mohammed Hawa

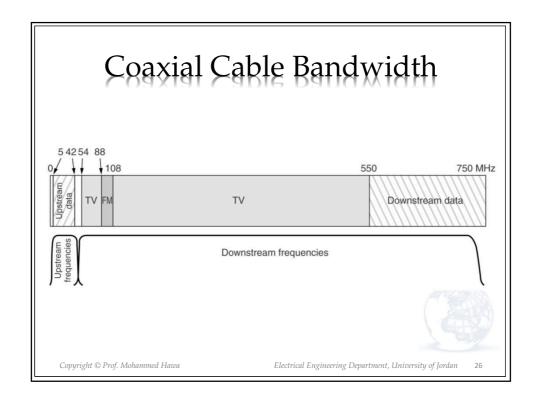
Electrical Engineering Department, University of Jordan

Active Optical Network (AON)

21

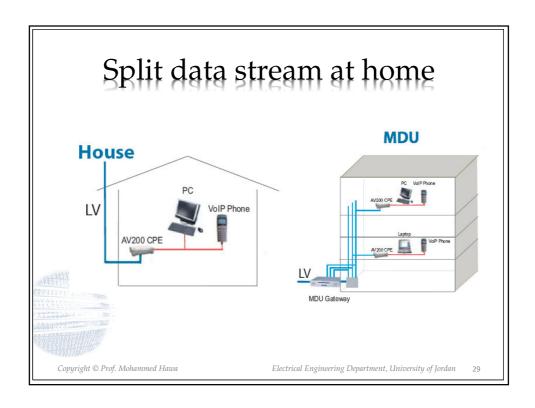

FTTx

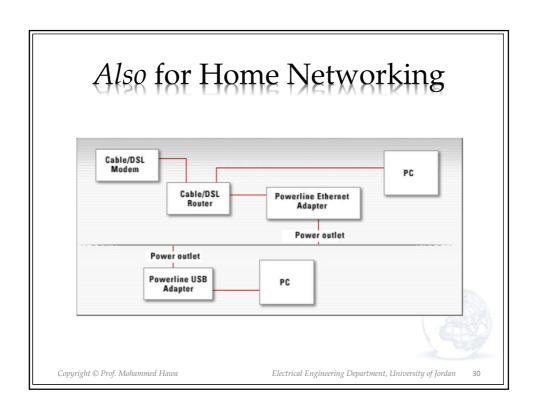

- The two main technologies to support FTTx architectures are:
- VDSL2 and G.fast: used along with FTTN, FTTC and FTTdp deployments.
- Passive optical network (PON): used in FTTH and in some FTTB deployments. Also in FTTN, FTTC, FTTdp along with VDSL2 and G.fast.


Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan

Name	Standard	Maximum Split ratio	Downstream Capacity*	Upstream Capacity*	Layer 2 encapsulation
GPON	ITU-T	1:64	2.5 Gbps	1.25 Gbps	ATM &
(Gigabit PON)	G.984		_	_	Ethernet
10G-PON	ITU-T	1:128	10 Gbps	2.5 Gbps	Ethernet
(10 Gigabit PON)	G.987		•	•	
NG-PON2	ITU-T	1:128	40 Gbps	40 Gbps	Ethernet
(or TWDM-PON)	G.989				
EPON (Ethernet PON)	IEEE 802.3ah	1:32	1.25 Gbps	1.25 Gbps	Ethernet
10G-EPON (10 Gigabit Ethernet PON)	IEEE 802.3av	1:64	10 Gbps	1.25 Gbps	Ethernet
50G-EPON (50 Gigabit Ethernet PON)	IEEE 802.3ca	1:64	50 Gbps	50 Gbps	Ethernet

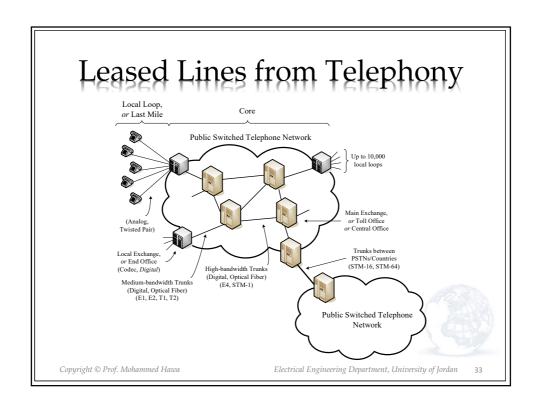



DOCSIS (Data Over Cable Service Interface Specifications)

CableModem Standard	Ratified as ITU-T	DOCSIS (6 MHz channels)		EuroDOCSIS (8 MHz channels)	
Name	Standard	Downstream rate	Upstream rate	Downstream rate	Upstream rate
DOCSIS 1.1	J.112 Annex B	42.88 Mbit/s	10.24 Mbit/s	55.62 Mbit/s	10.24 Mbit/s
DOCSIS 2.0	J.122	42.88 Mbit/s	30.72 Mbit/s	55.62 Mbit/s	30.72 Mbit/s
DOCSIS 3.0	J.222	343.04 Mbit/s	122.88	444.96 Mbit/s	122.88
8 channel			Mbit/s		Mbit/s
DOCSIS 4.0 OFDM	J.481	10 Gbit/s	6 Gbit/s		

Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan



PLC Standards Groups

- High Definition PLC (HD-PLC), led by Panasonic;
- HomePlug Powerline Alliance (HomePlug); various power line communications specifications that support networking over existing home electrical wiring (HomePlug 1.0 (14 Mbit/s), HomePlug AV (200 Mbs) and HomePlug AV2 (1 Gbps and 1.3 Gbps)).
- IEEE 1901 supports both HomePlug and HD-PLC.
- ITU-T G.hn/G.9960 as a standard for high-speed power line, coax and phone line communications (1 Gbps).

Copyright © Prof. Mohammed Hawa

 ${\it Electrical\ Engineering\ Department,\ University\ of\ Jordan}$

Plesiochronous Digital Hierarchy (PDH)

European Standard:

Luropean Standard.				
Carrier	Multiplex	Data Rate	MUX Level	
E0	1 channel (voice or signaling)	64 kbps		
E1	30 speech + 1 framing + 1 signaling channels	2.048 Mbps	1st Level	
E2	Four E1 carriers + framing	8.448 Mbps	2 nd Level	
E3	Four E2 carriers + framing	34.368 Mbps	3 rd Level	
E4	Four E3 carriers + framing	139.264 Mbps	4 th Level	
E5	Four E4 carriers + framing	565.148 Mbps	5th Level	

U.S. Standard:

Carrier	Multiplex	Data Rate	MUX Level
T0	1 channel (voice and signaling combined)	64 kbps	
T1	24 PCM channels + framing	1.544 Mbps	1st Level
T2	Four T1 carriers + framing	6.312 Mbps	2 nd Level
T3	Seven T2 carriers + framing	44.736 Mbps	3 rd Level
T4	Six T3 carriers + framing	274.176 Mbps	4th Level

Copyright © Prof. Mohammed Hawa

 ${\it Electrical\ Engineering\ Department,\ University\ of\ Jordan}$

SDH (Synchronous Digital Hierarchy) / SONET (Synchronous Optical NETwork)

European Standard:

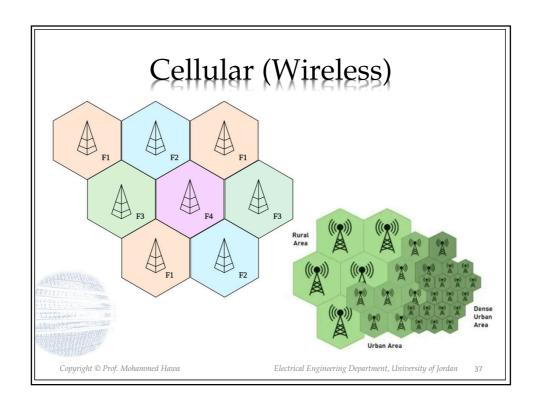
zurop euri oudituru.				
Optical Carrier	Multiplex	Data Rate		
STM-1	Basic	155.52 Mbps		
STM-4	Four STM-1 carriers	622.08 Mbps		
STM-16	Four STM-4 carriers	2.48832 Gbps		
STM-64	Four STM-16 carriers	9.95328 Gbps		
STM-256	Four STM-64 carriers	39.813 Gbps		
STM-1024	Four STM-256 carriers	159.252 Gbps		

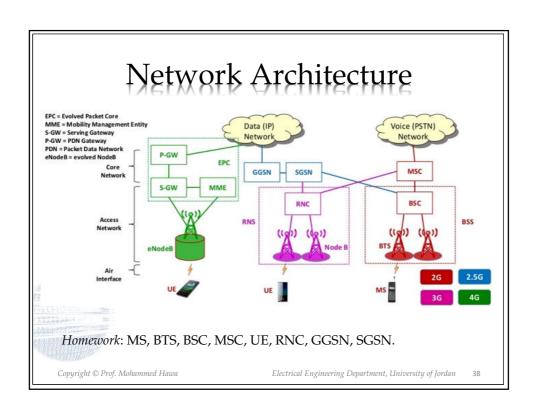
U.S. Standard:

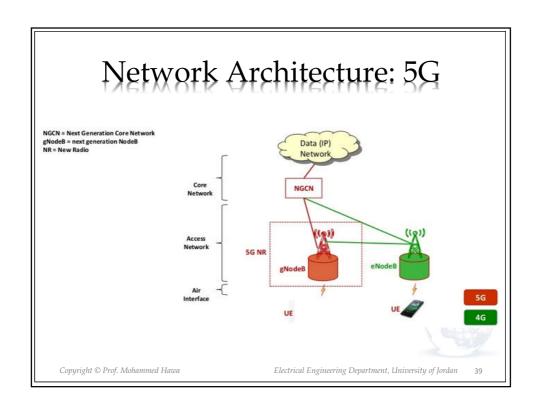
Optical Carrier	Electrical Carrier	Multiplex	Data Rate
OC-1	STS-1	Basic	51.84 Mbps
OC-3	STS-3	Three OC-1 carriers	155.52 Mbps
OC-12	STS-12	Four OC-3 carriers	622.08 Mbps
OC-48	STS-48	Four OC-12 carriers	2.48832 Gbps
OC-192	STS-192	Four OC-48 carriers	9.95328 Gbps
OC-768	STS-768	Four OC-192 carriers	39.813 Gbps
OC-3072	STS-3072	Four OC-768 carriers	159.252 Gbps

Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan


Remember...


- SDH is an ITU-T standard (G.707, G.708, G.709)
- STM-n stands for: Synchronous Transport Module


 Level n
- STS-n stands for: Synchronous Transport Signal Level n
- OC-n stands for: Optical Carrier Level n
- Benefits of SDH/SONET over PDH: simpler and a more flexible multiplexing at high data rates. Huge capacity of extra bits dedicated for network management and maintenance functions to allow protection rings.

Copyright © Prof. Mohammed Hawa

 ${\it Electrical\ Engineering\ Department,\ University\ of\ Jordan}$

Cellular Telephony (3GPP & ITU-T) Name (Technology) Data Standard 2.5G **GPRS** General Packet Radio Service 54 kbps (TDMA) 3G UMTS 384 kbps Universal Mobile Telecommunications System (CDMA) High Speed (OFDMA) **HSPA** Packet Access 7.2 Mbps 3.75G HSPA+ Evolved High Speed Packet 14.4 Mbps (Rel. 6) Access Release 6 (OFDMA + MIMO) LTE Long Term Evolution 100 Mbps (OFDMA + MIMO) 4G 500 Mbps LTE Advanced Long Term Evolution Advanced (Rel. 10) (OFDMA + MIMO) 4.75G LTE Advanced 256-QAM, Massive MIMO, 1 Gbps Pro (Rel. 13) LTE-Unlicensed & LTE IoT 100 MHz bandwidth @ 3.5 GHz, 5G 5G Evolution 10 Gbps (Rel. 17) Beam Management Copyright © Prof. Mohammed Hawa Electrical Engineering Department, University of Jordan